
Soft Computing manuscript No.
(will be inserted by the editor)

Adaptive Representation for Single Objective Optimization

Crina Groşan, Mihai Oltean

Department of Computer Science
Faculty of Mathematics and Computer Science
Babes-Bolyai University
Kogalniceanu 1, Cluj-Napoca 3400, Romania

Received: date / Revised version: date

Abstract A new technique called Adaptive Represen-
tation Evolutionary Algorithm (AREA) is proposed in
this paper. AREA involves dynamic alphabets for en-
coding solutions. The proposed adaptive representation
is more compact than binary representation. Genetic op-
erators are usually more aggressive when higher alpha-
bets are used. Therefore the proposed encoding ensures
an efficient exploration of the search space. This tech-
nique may be used for single and multiobjective opti-
mization. We treat the case of single objective optimiza-
tion problems in this paper. Despite its simplicity the
AREA method is able to generate a population converg-
ing towards optimal solutions. Numerical experiments
indicate that the AREA technique performs better than
other single objective evolutionary algorithms on the
considered test functions.

Keywords Evolution Strategy; Single Objective Op-
timization; Adaptive Representation; Higher Alphabets
Encoding

1 Introduction

Adaptive Representation Evolutionary Algorithm (AREA)
is similar to the Evolution Strategy (ES) technique ([11],
[12]) as it uses a population of individuals which are
modified by mutation. Whereas the ES individuals have
a fixed representation (binary or real), the AREA in-
dividuals use an adaptive representation that may be
changed during (and without halting) the search pro-
cess.

ES employs a special mechanism for adapting the
mutation parameter. For instance standard ES tries to
adapt the standard deviation parameter when the Gaus-
sian perturbation is used. These adaptations are of very
little help. It is so because the function to be optimized
is usually very intricate and the optimal parameter set-
ting for a certain region of the search space may not be
optimal for a neighboring region, at least.

Moreover, an incorrect setting for the value of the
mutation parameter may lead to poor results. For in-
stance, if the mutations are rare, the population could
(and often will) converge to a local optimal point. If the
mutations occur too often, the evolutionary process has
a random search character. Facing these two problems,
AREA employs a new way of searching through the so-
lution space.

Many examples from nature can be found in order to
sustain AREA. The first example resides in the human
DNA which is, roughly speaking, a string of nucleotides
over the alphabet {T (thymine), C (cytosine), G (gua-
nine), A (adenine)} [6], [9]. By contrast, the standard
evolutionary algorithms use strings over the alphabet {0,
1} which consists of only two values. The fournucleotide
system has been developed under the specific conditions
of the Earth environment. Had different conditions been
on Earth, maybe a tennucleotide system could have de-
veloped. Lately, the entire evolution was based on this
alphabet made up of only four symbols.

If we take a look at the history of the Earth we can
see that the species evolved very slowly. Billions of years
were needed to develop the diversity and perfection of
life we know today. The entire evolution (of the complex
structure) is based on reproduction by recombination
and mutation. Recombination ensures the perpetuation
of life. Mutation is responsible for maintaining diversity
and for exploring new functional ways to combine the
nucleotides.

If only twonucleotide systems had been used, the
length of the human DNA (that encodes the same di-
versity) would probably have been very large. A muta-
tion on this chromosome would probably be too small
to produce a significant change. But, too many muta-
tions would produce dramatic changes and the obtained
individual would not survive.

If tennucleotide systems had been used, the length of
the human DNA (that encodes the same diversity) would
have (probably) been very small. A mutation on this

2 Crina Groşan, Mihai Oltean

chromosome would have produced a significant change
and the species diversity would have been greater.

AREA is essentially a technique that works with higher
alphabets. Each AREA individual consists of a pair (x,
B) where x is a string encoding object variables and B
specifies the alphabet used for encoding x. Binary en-
coded strings are a particular case of AREA.

If only one alphabet had been used the gain of AREA
over standard ES would have been minimal. Thus, the
AREA individuals use a dynamic system of alphabets
that may be changed during (and without halting) the
search process. If an individual gets stuck in a local op-
timum - from where it is not able to “jump”- , the indi-
vidual representation is changed, hoping that this new
representation will help the individual to escape from
the current position and to explore farther and more ef-
ficiently the search space.

The similarities between the AREA behavior and the
behavior of other species from nature are also numerous.
For instance, the chameleon which is able to chance the
color of its skin depending on the place. The AREA in-
dividuals possess the same ability to change their looks
as the chameleon. From this point of view AREA may
be considered as an interesting case of chameleonic pro-
gramming.

Taking into account the No Free Lunch Theorems
[16] (NFL) we cannot say that AREA is better than
other evolutionary algorithms for all of the test prob-
lems. Indeed, several cases where other evolutionary al-
gorithms used for comparison are better than AREA
have been successfully identified. However, AREA sig-
nificantly outperforms the standard evolutionary algo-
rithms on the well-known difficult (multimodal) test func-
tions. This advantage of AREA makes it very suitable
for real-world applications where we have to deal with
highly multi-modal functions.

Like GP and GA, AREA is also subject to a debate
concerning the benefit of the genome-phenome systems
over the genome only systems. As stated in many pa-
pers there is a question whether the maintaining of mul-
tiple, different genomes that encode the same phenotype
should be beneficial. AREA maintains multiple different
genomes (strings encoded over different alphabets) that
encode the same phenotype (points in the search space)
and this ability seems to be very beneficial.

AREA relies mainly on Dynamic Representation (DR)
proposed in [10]. Both AREA and DR use higher alpha-
bets for encoding solutions and a special mutation opera-
tor that changes the encoding alphabet during the search
process. Whereas DR alphabets changing are blind, AREA
employs an efficient strategy for changing the encoding
alphabets.

The problems of adapting individual representation
and the parameters of an evolutionary algorithm are dif-
ficult. They have been studied since the birth of genetic
algorithms and evolutionary strategies. Some aspects of
that study are described in [1] - [5], [13] - [15].

The paper is organized as follows. The AREA tech-
nique is described in section 2. The algorithms used in
experiments are presented in section 3. Several numer-
ical experiments using are performed in section 4. The
test functions involved in the numerical experiments are
well-known benchmarking problems used to asses the
performances of the evolutionary algorithms. Most of
these functions are highly multimodal employing differ-
ent difficulties of the search space. Several important is-
sues regarding the AREA representation are discussed
in section 5.

2 The AREA technique

The main idea of this technique is to allow each solution
be encoded over a different alphabet. Moreover, the rep-
resentation of a particular solution is not fixed. Solution
representation is adaptive and may be changed during
the search process as an effect of the mutation operator.

2.1 Solution representation

Each AREA individual consists of a pair (x, B) where x
is a string encoding object variables and B specifies the
alphabet used for encoding x. B is an integer number,
B ≥ 2, and x is a string of symbols from the alphabet
{0, 1, ..., B−1}. If B = 2, the standard binary encoding
is obtained.

Each solution has its own encoding alphabet. The
alphabet over which x is encoded may change during
the search process.

When no ambiguity arises we will use B to denote
the alphabet B = {0, 1,...B − 1}.

An example of an AREA chromosome is the follow-
ing:

C = (301453, 6).

Remark : The genes of x may be separated by comma
if required. For instance the comma separator is always
needed when B ≥ 10.

2.2 Mutation

Mutation can modify object variables as well as the last
position (specifying the representation alphabet).

When the changing gene belongs to the object vari-
able substring (x - part of the chromosome) the mutated
gene is a randomly chosen symbol from the same alpha-
bet.

Consider the chromosome C represented over the al-
phabet B = 8:

C = (631751, 8).

Adaptive Representation for Single Objective Optimization 3

Consider a mutation occurs on position 3 in x and
the mutated value of the gene is 4. Then the mutated
chromosome is:

C1 = (634751, 8).

If the position specifying B is changed, then the ob-
ject variables will be represented by using symbols over
the new alphabet, corresponding to the mutated value
of B.

Consider the chromosome C represented over the al-
phabet B = 8:

C = (631751, 8).

Consider a mutation occurs on the last position and
the mutated value is B2 = 10. Then the mutated chro-
mosome is:

C2 = (209897, 10).

C and C2 encode the same value over two different
alphabets (B = 8, B2 = 10).

Remarks:

(i) A mutation generating an offspring worse than its
parent is called a harmful mutation.

(ii) A chromosome encoded over a higher alphabet has
a shorter length than a chromosome encoding the
same value (point in the search space) and the same
precision but over a lower alphabet. For instance if
we encode real numbers in the interval [0, 1] with the
precision 10−9 we have to use strings of length 30 over
the alphabet {0, 1} and strings of only 7 digits if we
use the alphabet 30.

(iii) The alphabet part of a chromosome C it is not af-
fected by normal mutation in our evolutionary model.
The string x of the chromosome is the only one mod-
ified by normal mutation. The alphabet part of the
chromosome is changed only when a predefined (con-
secutive) number of mutations of a solution do not
improve the quality of the considered individual. How-
ever, one may consider mutations which affect the
alphabet part of the individual in a standard way.

2.3 The evolutionary model

During the initialization stage each AREA individual
(solution) is encoded over a randomly chosen alphabet.
Each solution is then selected for mutation. If the off-
spring obtained by mutation is better than its parents,
then the offspring enters the new population.

If the number of successive harmful mutations for
an individual exceeds a prescribed threshold (denoted
by MAX HARMFUL MUTATIONS), then the individ-
ual representation (alphabet part) is changed and it en-
ters the new population with this new representation.

Otherwise the individual (the parent) enters unchanged
the next generation.

The reason behind this mechanism is to dynamically
change the individual representation whenever necesary.
If a particular representation has no potential for further
exploring the search space, then the representation is
changed. It is hoped that in this way the search space
will be explored more efficiently.

2.4 AREA Parameters

The basic parameters of AREA are:

(i) The population size;
(ii) MAX HARMFUL MUTATIONS;
(iii) The alphabets over which an individual may be rep-

resented;
The sets of alphabets used in the experiments per-
formed in this paper are {{0, 1}, {0, 1, 2}, . . . , {0,
1, 2,. . . , 31}}.

(iv) The representation precision which is taken into ac-
count when the individual alphabet is changed into
a new value;

(v) Mutation probability (pmwhich is usually fixed (for
instance 1 / mutations).

Note that if the alphabet is changed the pm is changed.
For instance, if the alphabet is B = 2 and the chromo-
some length is 30, the mutation probability is 1 / 30 =
0.033. If the used alphabet is 32 the chromosome encod-
ing the same value is made of only 6 digits and pm = 1
/ 6 = 0.66.

2.5 The AREA algorithm

The AREA algorithm may be depicted as follows:
begin
Set t = 0;
Random initializes chromosome population P (0);
Set to zero the number of harmful mutations for each

individual in P(0);
while (t ¡ number of generations) do
begin
P(t+1) = ∅;
for k = 1 to PopSize do
begin
Mutate the kth (the current) individual from P (t). An

offspring is obtained.
Set to zero the number of harmful mutations for the

offspring;
if the offspring is better than the current individual (the

parent)
then the offspring is added to P(t+1);
else begin
Increase the number of harmful mutations for the cur-

rent individual;

4 Crina Groşan, Mihai Oltean

if the number of harmful mutations for the current in-
dividual = MAX HARMFUL MUTATIONS

then begin
Change the representation for the current individual;
Set to zero the number of harmful mutations for the

current individual;
Add the current individual to P(t+1);
end
else Add current individual (the parent) to P(t+1);
endif
endif
endfor;
Set t = t + 1;
endwhile;
end

3 Algorithms used for comparison

Two algorithms are used for comparison purposes. Both
of them use dynamic representation and have been adapted
from [10]. Both algorithms use the evolutionary scheme
as the one used by AREA (i.e. a population of individ-
uals that are modified by mutation). Each of them is
described below.

3.1 DRES algorithm

Dynamic Representation Evolution Strategy (DRES) uses
the same solution representation and mutation opera-
tor as AREA uses. The difference between AREA and
DRES consists in the technique for changing the base.
In DRES algorithm the base is changed at the end of
each generation with a fixed probability.

3.2 SMES algorithm

Seasonal Model Evolution Strategy (SMES) uses the same
solution representation and mutation operator as AREA
and DRES. In SMES algorithm the base in which solu-
tion is encoded is changed after a fixed (specified) num-
ber of generations.

4 Numerical Experiments

Several experiments are performed in this section by us-
ing 6 well-known benchmarking problems. In the first
experiment we analyze the convergence ability to using
different base for encoding solutions. For this purpose we
use the bases 2 to 16. We apply the same algorithm (with
the same basic parameters) for all considered bases of
representation and for all considered test functions. The
algorithm is an (1+1) ES and uses a population with a
single individual in order to see the convergence speed.

In the second experiment the results obtained by
AREA are compared with the results obtained by other
two algorithms that use dynamic representation.

In third experiment we analyze how the number of
alphabets used by AREA for encoding solutions influ-
ences the results.

Fourth experiment analyzes how the chose of the
value for MAX HARMFUL MUTATIONS affects the re-
sults.

The essential role of these experiments is to show
that using only one base for solution encoding (without
change it during the search process) there are cases when
the optimum cannot be found. Changing the represen-
tation base provides a new way of searching through the
solution space. The second experiment show us which
technique used for changing the base is suitable.

4.1 Test functions

The test functions used in these experiments are well
known benchmarking problems used for assessing and
comparing the performances of search algorithms [7],
[17]. Six test functions are presented in this paper.

Each test function has one or more global optimal
solutions and multiple local optimal solutions.

The test functions f1 – f6 are described in what fol-
lows. We denote by n the number of space variables, by
x = (xi)i=1,n a solution over the search space and by x0

the global optimal solution.
Test function f1 is the following:

f1(x) = −a · e−b

√
n∑

i=1

x2
i

n − e

∑
cos(c·xi)

n + a + e,

where a = 20, b = 0.2, c = 2π. The domain of definition
is [-32, 32]n.

The function is also known as Ackley’s Path and is a
widely used multimodal test function. The global min-
imum of this function is x0 = (0,0,. . . ,0) and the value
of the function in this point is f1(x0) = 0.

Test function f2 is defined as follows:

f2(x) =
1

4000
·

n∑

i=1

x2
i −

n∏

i=1

cos(
xi√

i
) + 1.

The domain of definition is [-500, 500]n. Test func-
tion f2, also known as Griewangk’s function has many
widespread local minima. The locations of the local min-
ima are regularly distributed. The global minimum of
this function is x0 = (0,0,. . . ,0) and the function’s value
in this point in f2(x0) = 0.

Test function f3 is the following:

f3(x) = −
n∑

i=1

sin(xi) · sin2·m(
i · x2

i

π
).

Adaptive Representation for Single Objective Optimization 5

The domain of definition is [0, π]n. The Michalewicz
function (f3) is a multimodal test function (n! local op-
tima). The parameter m defines the ”steepness” of the
valleys or edges. A higher value for m leads to more
difficult search. For very large m the function is like a
needle in the haystack (the function values for points in
the space outside the narrow peaks give very little in-
formation on the location of the global optimum). The
value of the function in the global optima (x0) for n=10
is f3(x0)=-9.667

Test function f4 is the following:

f4(x) = 10 · n +
n∑

i=1

(x2
i − 10 · cos(2 · π · xi)).

The domain of definition is [-2,2]n.
Test function f4 is also known as Rastrigin’s function

and is based on the unimodal function proposed by De
Jong with the addition of cosine modulation to produce
many local minima. Thus, the test function is highly
multimodal. However, the locations of the minima are
regularly distributed. The global optimum point is x0 =
(0,0,. . . ,0) and the value of the function in this point is
f4(x0) = 0.

Test function f5is the following:

f5(x) =
n−1∑

i=1

100 · (xi+1 − x2
i)

2 + (1− xi)2.

The domain of definition is [-2, 2]n. Test function f5,
also known as Rosenbrock’s valley, is a classic optimiza-
tion problem, also known as the Banana function. The
global optimum is inside a long, narrow, parabolically
shaped flat valley. Finding the valley is trivial; still con-
vergence to the global optimum is difficult. The global
optimum point is x0 = (0,0,. . . ,0) and the value of the
function in this point is f5(x0) = 0.

Test function f6 is defined as follows:

f6(x) =
n∑

i=1

(−xi · sin(
√
|xi|)).

The domain of definition is [-500, 500]n. Test function
f6 , also known as Schwefel’s function is deceptive in
that the global minimum is geometrically distant, over
the parameter space, from the next best local minima.
Therefore, the search algorithms are potentially prone
to converge in the wrong direction. The global optimum
point is x0 =(420.9687,. . . ,420.9687) and the value of the
function in this point is f6(x0) = -n. 418.9829.

The number of the space dimensions was set to 30
for each test function. Each algorithm is run 100 times
for each test function in each experiment and with all of
the considered parameters. Because individuals do not
interact with one another, populations consisting of a
single individual are used in all the experiments. The
use of larger population sizes would bring about an in-
crease in the performances. The representation precision

was chosen in such a way as to have 30 digits for each
space dimension when binary encoding is used. During
the initialization stage (at the beginning of the search
process) all of the AREA individuals are encoded over
the alphabet {0, 1} (binary strings). One may initial-
ize all of the AREA individuals over a randomly chosen
alphabet.

The representation precision for the test functions f1

- f6 is presented in Table 1.

Table 1 The representation precision of the variables for the
test functions f1 - f6.

Test func-
tion

Representation precision

f1 0.0000001
f2 0.000001
f3 0.000000003
f4 0.000000007
f5 0.00000001
f6 0.000001

4.2 Experiment 1

In this experiment the relationship between the base con-
sidered for solution representation and the average of the
best individual value in the last generation is analyzed.
The bases between 2 and 16 are used (more bases can
be also used). Base 2 corresponds to binary encoding.
Base 10 is similar to real encoding, but the correspond-
ing genetic operators are different from those used in
conjunction with the real encoding. The algorithms are
run for 10000 iterations. The number of iterations is not
sufficient to ensure a perfect convergence but it can lead
us to the base suitable for each function. The results are
averaged over 100 runs.

The algorithm used is a simplified (1+1) ES. which
uses a single population of individuals that are repre-
sented as binary strings. In our experiments we allow
solutions be encoded in other bases (not only in base 2).
The genetic operator used in this algorithm is the muta-
tion only. Each individual is selected for mutation. Each
gene is mutated with a fixed mutation probability. The
parent and the offspring compete for survival.

The parameters values used in this algorithm are
given in Table 2.

The relationship between fitness value and the base
used for encoding the chromosomes is depicted in Figure
1.

Figure 1 (a) shown that after 10000 iterations binary
encoding seems to be better than the encoding over the
other considered bases. Thus we can choose binary en-
coding for solving this problem. The results obtained by
considering base 4 is close to the result obtained using
binary encoding.

6 Crina Groşan, Mihai Oltean

Fig. 1 Relationship between fitness value and the base used for encoding the solutions. The picture (a) corresponds to the
test function f1, the picture (b) corresponds to the test function f2., the picture (c) corresponds to the test function f3, the
picture (d) corresponds to the test function f4., the picture (e) corresponds to the test function f5., the picture (f) corresponds
to the test function f6.

Adaptive Representation for Single Objective Optimization 7

Table 2 Parameter used by (1+1) ES for the test function
f1 − f6.

Parameter Value

Number of dimensions 30
Number of mutations per chromo-
some

1

Population size 1
Number of generations 10000

According to Figure 1 (b) binary encoding seems to
be better than the encoding over the other considered
bases. Thus we can choose binary encoding for solving
this problem. The results obtained by using the bases 3
and 4 are also good results.

As we can see from Figure 1 (c) the best fitness value
for 10000 generations is obtained by considering solu-
tions encoded in the bases 3 and 4. We can see that al-
most considered base representations give e better result
than binary representation (without bases 7 and 11).

Figure 1 (d) shown that the algorithm using binary
encoding performs significantly better than the algo-
rithm using other encoding. Good results are obtained
considering bases 4 and 5.

We can see from Figure 1 (e) that the best result is
obtained by encoding solutions in the base 4. A good
result is obtained also for the base 8 and 2.

For the test function f6 (see Figure 1 (f) the base 3
seems to be the best choice for encoding solutions. The
results obtained considered the bases 8, 9 10 11 and 12
are better than binary encoding.

4.3 Experiment 2

The relationship between the number of iterations and
the average of the best individual value in the last gen-
eration is analyzed in this experiment. The parameters
used by AREA are given in Table 3.

Table 3 Parameters used by AREA for Experiment 2.

Parameter Value

Number of alphabets 31
MAX HARMFUL MUTATION 50
Number of mutations / chromosome 2

DRES and SMES use the same parameters as AREA.
The probability of changing an alphabet in DRES is 0.02.
The number of generations after the passing of which
SMES changes the alphabet is 50.

The results of this experiment are depicted in Figure
2.

To obtain a stronger evidence of the AREA power
we give in Table 4 the mean of the results at the end of
search.

Table 4 The average (over 100 runs) of the solutions at the
end of search.

Test func-
tion

AREA DRES SMES

f1 0.9524 2.7255 2.6234
f2 0.2299 0.7221 0.7177
f3 -26.4601 -26.8517 -26.5056
f4 8.1332 9.1527 9.8337
f5 137.0539 164.3271 155.4578
f6 -11720.6633 -11962.1233 -11956.92

From Figure 2 and Table 4 we can see that AREA
outperforms DRES and SMES algorithms on most of the
considered test problems. DRES and SMES have a bet-
ter overall behavior than AREA only for the test func-
tion f6. AREA also has a faster convergence than DRES
and SMES.

To determine if the differences between AREA and
DRES or SMES are significant we use a t-test with 95%
confidence. Before applying the t-test an F-test has been
used for determining whether the compared data have
the same variance. The P-values of a two-tailed t-test
are given in Table 5.

Table 5 The P-values of the t-test with 99 degrees of free-
dom.

Test func-
tion

AREA – SMES
P – Values

AREA – DRES
P - Values

f1 1.7E-11 1.1E-10
f2 1.6E-6 1E-7
f3 0.8000 0.0396
f4 0.0446 0.2098
f5 0.4081 0.2078
f6 0.0122 0.0142

From Table 5 it can be seen that the differences be-
tween AREA and the other two algorithms are statisti-
cally significant on most of the considered test functions
excepting the test functions f3 and f5 (where the dif-
ferences between AREA and SMES are not considered
statistically significant) and for the functions f4 and f5

(where the differences between AREA and DRES are
not considered statistically significant).

4.4 Experiment 3

The relationship between the number of alphabets used
for chromosome encoding and the average of the best in-
dividual values in the last population is analyzed in this
experiment. The parameters used by AREA are given in
Table 6.

For speed purposes, the test functions are analyzed
for 10 dimensions.

In Figure 3 the results of this experiment are de-
picted.

8 Crina Groşan, Mihai Oltean

Fig. 2 The relationship between the number of iterations and the average of the best individual value in the last generation
over 100 runs for: (a) test function f1; (b) test function f2; (c) test function f3; (d) test function f4; (e) test function f5; (f)
test function f6. The number of generation varies between 1000 and 10000. The results are averaged over 100 runs.

Adaptive Representation for Single Objective Optimization 9

Fig. 3 The relationship between the number of alphabets used for encoding chromosomes and the average of the best individual
values in the last population over 100 runs. The number of alphabets varies between 2 and 32. The alphabet used are {0, 1},
{0, 1, 2}, . . . , {0, 1, 2,. . . , 31}. The picture (a) and (b) corresponds to the test function f1 and f2 respectively.

10 Crina Groşan, Mihai Oltean

Table 6 Parameters used by AREA in Experiment 3.

Parameter Value

Number of mutations / chromo-
some

2

Number of generations 5000
MAX HARMFUL MUTATION 3

Having in view Figure 4 we can see the supremacy of
the multi-alphabet system over the single - alphabet sys-
tem. Using multiple alphabets for solution encoding sig-
nificantly improves the search quality. Using more than
5 alphabets seems to be enough for most of the consid-
ered test problems. Using more alphabets (more than
20) does not significantly improve the solution.

4.5 Experiment 4

The relationship between the MAX HARMFUL MUTA-
TIONS parameter and the average of the best individual
values in the last population is analyzed in this experi-
ment. The parameters used by AREA are given in Table
7.

Table 7 Parameters used by AREA for Experiment 4.

Parameter Value

Number of alphabets 31
Number of mutations/chromosome 2
Number of generations 5000

The results of this experiment are depicted in Figure
4.

Based on this picture we can see that it is diffi-
cult to answer to the question ”What is the optimal
value for the MAX HARMFUL MUTATIONS parame-
ter?”. It seems that none of the considered values for
this parameter is the best for all the test functions. But
if the value of this parameter is high the number of al-
phabets changing is small. In these cases the process
behaves like an standard (1 + 1) ES – that does not
change the individual representation. If the value for
MAX HARMFUL MUTATIONS is equal to or greater
than the number of generations the initial alphabet will
never be changed and the search will be as for the well-
known (1+1) ES process.

5 Discussions

Several important issues regarding the AREA represen-
tation are discussed in this section.

The unanimously accepted way of applying the mu-
tation operator to chromosomes represented as string of
genes is by traversing the chromosome gene by gene and
mutating each of these with a mutation probability pm.

The AREA chromosome is shorter when higher al-
phabets are used. For instance, a 30 bits chromosome has
only 6 digits when the alphabet 32 is used. Thus, when
performing mutation by traversing the chromosome, the
time AREA takes, using the alphabet 32, is one fifth of
the time required for the mutation of a bit string chro-
mosome. That is a rather important way of speeding-up.

Binary bits are grouped in undivided sequences by
using higher alphabets. For instance when the alpha-
bet 32 is used, bit sequences of length 5 are represented
as a single digit (between 0 and 31). Mutating a digit
of such an AREA chromosome actually means mutat-
ing the corresponding 5 bits sequence. In that case the
mutations, rather numerous (maximum 5 mutations /
chromosome as many – if one mutation / chromosome
is used when the chromosome is represented over the al-
phabet 32) are not homogenously distributed over the
entire chromosome. They would be so if the mutation
operator were applied over the bit string. Thus the good
results obtained by using AREA may be connected to
this way of applying the mutation operator.

This kind of mutation is in full agreement to process
from nature (if a DNA nucleotide is affected by mutation
(by radiation, for instance) the neighboring nucleotides
have an increased probability of being mutated [9].

At first sight, AREA seems to be a special case of
dynamic changing of the mutation probability parame-
ter (but AREA is more than this). The AREA mutation
probability is fixed (i.e. one mutation / chromosome) but
changing the representation to a higher alphabet gener-
ates greater changes as if the mutation probability were
changed. In these conditions it is interesting to compare
AREA with others techniques that change / adapt the
mutation probability during the search process.

6 Conclusions and Further Work

Taking into account the No Free Lunch Theorems (NFL)
(see [16]), we cannot say that AREA is better than other
evolutionary algorithms for all of the test problems. In-
deed, several cases where other evolutionary algorithms
used for comparison are better than AREA have been
successfully identified. However, AREA significantly out-
performs the standard evolutionary algorithms on the
well-known difficult (multimodal) test functions. This
advantage of AREA makes it very suitable for real-world
applications where we have to deal with highly multi-
modal functions.

Had only one base been used for solution encoding
the gain of AREA over standard ES would have been
minimal. Thus, the AREA individuals use a dynamic
system of alphabets that may be changed during (and
without halting) the search process. If an individual gets
stuck in a local optimum - from where it is not able to
”jump”-, the individual representation is changed, hop-
ing that this new representation will help the individual

Adaptive Representation for Single Objective Optimization 11

Fig. 4 The relationship between the MAX HARMFUL MUTATIONS parameter and the average of the best individual values
in the last population for: (a) test function f1; (b) test function f2; (c) test function f3; (d) test function f4; (e) test function f5;
(f) test function f6. The results are averaged over 100 runs. The MAX HARMFUL MUTATIONS parameter varies between
1 and 20.

12 Crina Groşan, Mihai Oltean

to escape from the current position and to explore far-
ther and more efficiently the search space.

The numerical experiments proved that the ability
of changing the alphabets when needed is essential. The
blind alphabets changes employed by SMES and DRES
have a considerable lower ability of converging towards
the optimal solution when compared to AREA. There-
fore the proposed encoding ensures an efficient explo-
ration of the search space.

The AREA technique could be adopted for other evo-
lutionary techniques such as GP [1] and GA [7]. Further
efforts will be dedicated to the embedding of the AREA
representation into others standard evolutionary algo-
rithms.

References

1. Angeline, P.: Two self-adaptive crossover operators
for genetic programming. In: Angeline, P.J., Kinnear,
K.E.,jr., (Eds.): Advances in Genetic Programming, 2.
MIT Press, Cambridge, MA (1995) 89-109.

2. Bäck, T.: Optimal mutation rate in genetic search. In
Forest, S. (Ed.): Proc. 5th International conference in
Genetic Algorithms. Morgan Kaufmann, San Mateo, CA
(1993) 2-8.

3. Bäck, T., Schütz, M.: Intelligent mutation rate control
in canonical genetic algorithms. Ras, Z.W., Michalewicz,
M. (Eds.): Foundations on Intelligent Systems. Lec-
tures Notes in Artificial Intelligence, Vol. 1079. Springer,
Berlin (1996) 158-167.

4. Booker, L.B.: Improving search in Genetic Algorithms.
In Davis, L. (Ed.). Genetic Algorithms and Simulated
Annealing. Morgan Kaufmann, San Mateo, CA (1987)
61-73.

5. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter
control in evolutionary algorithms. IEEE Transaction on
Evolutionary Computation, Vol. (1999) 124-133.

6. Elseth G. D., Baumgardner K. D., Principles of Modern
Genetics, West Publishing Company, (1995).

7. Goldberg, D.E.: Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley, New
York (1989).

8. Holland, J.H.: Adaptation in Natural and Artificial Sys-
tems. University of Michigan Press, Ann Arbor (1975).

9. Kimura, M., The Neutral Theory of Molecular Evolution.
Cambridge University Press (1983).

10. Kingdon, J., Dekker, L.: The shape of space. Technical
Report RN/95/23, Intelligent System Lab, Departament
of Computer Science, University College London, London
(1995).

11. Rechenberg, I.: Evolutions strategie: Optimierung Tech-
nischer Systeme nach Prinzipien der Biologischen Evolu-
tion. FrommannHolzboog Verlag, Stuttgart (1973)

12. Schwefel, H.P.: Numerical Optimization of Computer
Models. John Wiley, Chichester (1981).

13. Schaffer, J.D., Morishima, A. An adaptive crossover
distribution mechanism for genetic algorithms. Grefen-
stette, J.J. (Ed.): Proc. 2nd International Conference
on Genetic Algorithms. Lawrence Erlbaum Associates,
Hillsdale, NJ (1987) 3640.

14. Shaefer, C.G.: The ARGOT Strategy: Adaptive Rep-
resentation Genetic Optimizer Technique, in Laurence,
Erlbaum (Eds.), ICGA II. Hillsdale, NJ (1987).

15. Spears, W.M.: Adapting crossover in a genetic algorithm.
Report AIC92025, Navy Center for Applied Research in
Artificial Intelligence, USA (1992)

16. D.H. Wolpert, W. G. Macready, No free lunch theo-
rems for optimization, IEEE Transaction on Evolution-
ary Computation, (1997) 1:67-82.

17. Yao, X., Liu, Y., Lin, G.: Evolutionary programming
made faster. IEEE Transaction on Evolutionary Com-
putation, Vol. 3(2) (1999) 82-102.

