
Evolving reversible circuits for
the even-parity problem

Mihai Oltean

Department of Computer Science
Faculty of Mathematics and Computer Science

Babeş-Bolyai University, Kogălniceanu 1
Cluj-Napoca, 3400, Romania.

moltean@cs.ubbcluj.ro

Abstract. Reversible computing basically means computation with less
or not at all electrical power. Since the standard binary gates are not
usually reversible we use the Fredkin gate in order to achieve reversibil-
ity. An algorithm for designing reversible digital circuits is described in
this paper. The algorithm is based on Multi Expression Programming
(MEP), a Genetic Programming variant with a linear representation of
individuals. The case of digital circuits for the even-parity problem is in-
vestigated. Numerical experiments show that the MEP-based algorithm
is able to easily design reversible digital circuits for up to the even-8-
parity problem.

1 Introduction

The ultimate purpose of reversible computing is to perform computations less
or not at all electrical power. Logically reversible operations occupy a central
role in considerations of the fundamental physical limits of information handling
[7]. The early work of Landauer showed that energy dissipation occurs during
the destruction of information of the previous state of the system rather than
the acquisition of information during the computational process. Subsequently,
Bennett showed that computation could be carried out completely with opera-
tions that are logically reversible, i.e., operations in which the output uniquely
defines the input [2].

One such reversible logic element is the Fredkin gate (FG) [3, 8] which con-
tains 3 inputs and 3 outputs. Fredkin gate constitute a complete set of operators
in that any logic operation (e.g., AND, OR, NOT) can be constructed from a
combination of FGs.

In this paper, we propose a variant of the Multi Expression Programming
(MEP) [11, 12] for designing reversible digital circuits for the even-parity prob-
lem. We choose to apply the MEP-based technique to the even-parity problems
because according to Koza [6] these problems appear to be the most difficult
Boolean functions to be detected via a blind random search.

Standard GP was able to solve up to even-5 parity when the set of gates
F={AND, OR, NAND, NOR} is used [5]. Improvements, such as Automatically

2 Mihai Oltean

Defined Functions [6] and Sub-symbolic node representation [14], allows GP
programs to solve larger instances of the even-parity problem. Using MEP and
reversible gates we are able to evolve a solution up to even-8-parity function
using a reasonable population size.

The paper is organized as follows. MEP technique is briefly described in sec-
tion 2. The way in which MEP can be applied for reversible circuits is introduced
in section 3.1. Several numerical experiments for designing reversible digital cir-
cuits are performed in section 4. A comparison with standard digital circuits is
described in section 4.3. Further research directions are indicated in section 5.

2 Basic on MEP

The Multi Expression Programming (MEP) [10–12] technique is briefly described
in this section.

2.1 Individual Representation

MEP genes are represented by substrings of a variable length. The number of
genes per chromosome is constant and it defines the length of the chromosome.
Each gene encodes a terminal or a function symbol. A gene encoding a function
includes references towards the function arguments. Function arguments always
have indices of lower values than the position of that function in the chromosome.

This representation is similar to the way in which C and Pascal compilers
translate mathematical expressions into machine code.

MEP representation ensures that no cycle arises while the chromosome is
decoded (phenotypically transcripted). According to the representation scheme
the first symbol of the chromosome must be a terminal symbol. In this way only
syntactically correct programs (MEP individuals) are obtained.

Example

We employ a representation where the numbers on the left positions stand
for gene labels (or memory addresses). Labels do not belong to the chromosome,
they are provided here only for explanation purposes.

For this example, we use the set of functions F = {+, *} and the set of
terminals T = {a, b, c, d}. An example of chromosome using the sets F and T
is given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

Evolving reversible circuits for the even-parity problem 3

2.2 Decoding MEP Chromosome and Fitness Assignment Process

In this section we described the way in which MEP individuals are translated
into computer programs and the way in which the fitness of these programs is
computed.

This translation is achieved by reading the chromosome top-down. A termi-
nal symbol specifies a simple expression. A function symbol specifies a complex
expression obtained by connecting the operands specified by the argument po-
sitions with the current function symbol.

For instance, genes 1, 2, 4 and 5 in the previous example encode simple ex-
pressions formed by a single terminal symbol. These expressions are:

E1 = a,
E2 = b,
E4 = c,
E5 = d,

Gene 3 indicates the operation + on the operands located at positions 1 and
2 of the chromosome. Therefore gene 3 encodes the expression:

E3 = a + b.

Gene 6 indicates the operation + on the operands located at positions 4 and
5. Therefore gene 6 encodes the expression:

E6 = c + d.

Gene 7 indicates the operation * on the operands located at position 3 and
6. Therefore gene 7 encodes the expression:

E7 = (a + b) ∗ (c + d).

E7 is the expression encoded by the whole chromosome.
There is neither practical nor theoretical evidence that one of these expres-

sions is better than the others. Moreover Wolpert and McReady [17] proved that
we cannot use the search algorithm’s behavior so far for a particular test function
to predict its future behavior on that function. Thus we cannot choose one of the
expressions (let us say expression E7) to store the output of the chromosome.
Even this expression proves to be useful for the first 10 generations we cannot
guarantee that it will be the best option for all generations.

This is why each MEP chromosome is allowed to encode a number of expres-
sions equal to the chromosome length. Each of these expressions is considered
as being a potential solution of the problem.

This is very important because we can get many solutions within the same
running time as in the case of one solution/chromosome.

4 Mihai Oltean

The value of these expressions may be computed by reading the chromosome
top down. Partial results are computed by Dynamic Programming [1] and are
stored in a conventional manner.

As MEP chromosome encodes more than one problem solution, it is interest-
ing to see how the fitness is assigned. Usually the chromosome fitness is defined
as the fitness of the best expression encoded by that chromosome. For instance, if
we want to solve symbolic regression problems the fitness of each sub-expression
Ei may be computed using the formula:

f(Ei) =
n∑

k=1

|ok,i − wk|,

where ok,i is the obtained result by the expression Ei for the fitness case k and
wk is the targeted result for the fitness case k. In this case the fitness needs to
be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
expressions encoded in chromosome:

f(C) = min
i

f(Ei).

When we have to deal with other problems we compute the fitness of each
sub-expression encoded in the MEP chromosome and the fitness of the entire
individual is given by the fitness of the best expression encoded in that chromo-
some.

2.3 Genetic Operators

Search operators used within MEP algorithm are crossover and mutation. These
operators preserve the chromosome structure. All offspring are syntactically cor-
rect expressions.

Crossover By crossover two parents are selected and recombined. For instance,
within the uniform recombination the offspring genes are taken randomly from
one parent or another.

Example

Let us consider the two parents Parent1 and Parent2 given in Table 1. The
two offspring Offspring1 and Offspring2 are obtained by uniform recombina-
tion as shown in Table 1.

2.4 Mutation

Each symbol (terminal, function or function pointer) in the chromosome may be
the target of mutation operator. By mutation some symbols in the chromosome
are changed with a fixed mutation probability pm. To preserve the consistency
of the chromosome its first gene must encode a terminal symbol.

Evolving reversible circuits for the even-parity problem 5

Table 1. MEP uniform recombination.

Parents Offspring
Parent1 Parent2 Offspring1 Offspring2

1: b
2: * 1, 1
3: + 2, 1
4: a
5: * 3, 2
6: a
7: - 1, 4

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

1: a
2: * 1, 1
3: + 2, 1
4: c
5: * 3, 2
6: + 4, 5
7: - 1, 4

1: b
2: b
3: + 1, 2
4: a
5: d
6: a
7: * 3, 6

2.5 MEP Algorithm

Standard MEP algorithm uses steady state [15] as its underlying mechanism.
MEP algorithm starts by creating a random population of individuals. The fol-
lowing steps are repeated until a given number of generations 1 is reached. Two
parents are selected using a selection procedure. The parents are recombined in
order to obtain two offspring. The offspring are considered for mutation. The best
offspring replaces the worst individual in the current population if the offspring
is better than the worst individual.

The algorithm returns as its answer the best expression evolved along a fixed
number of generations.

3 Reversible computing

The ultimate purpose of reversible computing is to perform computations less
or not at all electrical power. Logically reversible operations occupy a central
role in considerations of the fundamental physical limits of information handling
[7]. The early work of Landauer showed that energy dissipation occurs during
the destruction of information of the previous state of the system rather than
the acquisition of information during the computational process. Subsequently,
Bennett showed that computation could be carried out completely with opera-
tions that are logically reversible, i.e., operations in which the output uniquely
defines the input [2].

One such reversible logic element is the Fredkin gate (FG) [3] which contains
an input control channel A, and two additional input channels, B and C, which
exchange values if A is set at 1 or will go through the gate unchanged if A is
set at 0. Fredkin gates constitute a complete set of operators in that any logic
operation (e.g., AND, OR, NOT) can be constructed from a combination of FGs
[3].

The Fredkin gate is depicted in Figure 1.
1 In a steady-state algorithm, a generation is considered when the number of newly

created individuals is equal to the population size.

6 Mihai Oltean

Fig. 1. Fredkin gate has 3 inputs and 3 outputs. If A = 0 the outputs are identical
with the inputs. If A = 1 the inputs B and C are swapped. We can easily reconstruct
the input from the output.

3.1 MEP for reversible circuits

The interpretation for a MEP chromosome needs to be modified because re-
versible gates have more than one output. Thus an MEP chromosome containing
N Fredkin gates actually provides 3 ∗N outputs (plus the outputs provided di-
rectly from the inputs). MEP representation will be unchanged, but during the
fitness evaluation we will have to handle more circuits than the case of standard
gates.

Another modification is related to the number of inputs. Two constant inputs
0 (always-OFF) and 1 (always-ON) have been added. These 2 inputs are very
important in simulating the standard gates (such as NOT, AND) [3]. Moreover,
without these 2 inputs we are not able to build a circuit for the even-parity
problems. For instance, in the case of even-3-parity problem our circuits must
signal 0 when all inputs are 1. But, the Fredkin gate can never generate a 0 value
when all inputs are 1 (see Figure 1).

4 Numerical experiments

Several numerical experiments for evolving reversible digital circuits are per-
formed in this section.

4.1 Test problem

Our aim is to find a Boolean function that satisfies a set of fitness cases. The
particular function that we want to find is the Boolean even-parity function. This
function has k Boolean arguments and it returns T (True) if an even number
of its arguments are T. Otherwise the even-parity function returns F (False)
[6]. According to [6] the Boolean even-parity functions appear to be the most
difficult Boolean functions to detect via a blind random search.

The terminal set T consists of the k + 2 Boolean arguments d0, d1, d2, ...
dk−1, 0, 1.

The function set F consists of one three-argument gate: the Fredkin gate.

Evolving reversible circuits for the even-parity problem 7

The set of fitness cases for this problem consists of the 2k combinations of
the k Boolean arguments. We have also added two constants inputs which are
always signals 0 (respectively 1). These 2 fixed inputs are very important in
simulating standard gates (such as NOT, AND, see [3] for more details). Thus
each fitness case will have k + 2 inputs and one output.

4.2 Results

In this section we perform several experiments with MEP for solving several
instances of the even-parity problem. General parameter settings for MEP are
given in Table 2.

Table 2. General parameters of the MEP algorithm for designing reversible circuits
for the even-parity problem.

Parameter Value

Mutation probability 0.2
Crossover type Uniform
Crossover probability 0.9
Selection q-tournament (q = 1% of the population size)
Function set F = {Fredkin gate}

For reducing the chromosome length we keep all the terminals on the first
positions of the MEP chromosomes.

The results along with the particular parameters used for obtaining them are
given in Table 3. Success rate is computed as the number of successful runs over
the total number of runs.

Table 3. Success rate of the MEP-based algorithm for evolving reversible digital cir-
cuits. Success rate is computed over 100 independent runs. Circuit size is the minimum
number of gates obtained in one of the successfull runs.

Problem Pop size Number of
generations

Chromosome
length

Success
rate %

Circuit
size

even-3-parity 1000 50 10 95 3
even-4-parity 1000 50 15 35 4
even-5-parity 1000 100 20 15 5
even-6-parity 2000 200 30 18 6
even-7-parity 3000 500 30 29 8
even-8-parity 5000 500 30 11 12

Table 3 shows that MEP algorithm is able to evolve reversible circuits for
the even-parity problem. The shortest (regarding the number of gates) evolved

8 Mihai Oltean

reversible circuits for the even-3-parity and even-4-parity problem are depicted
in Figures 2 and 3.

Fig. 2. The shortest evolved reversible digital circuit for the even-3-parity problem.
Input 3 always signals 0 and input 4 always signals 1. Output 1 provides the result for
the even-parity problem. The other outputs are used only for achieving the reversibility.
FG stands for the Fredkin gate.

4.3 Comparison with standard approaches

Multi Expression Programming has been used [12] for designing standard digital
circuits for the even-parity problem. Using the gates AND, OR, NAND, NOR
we have been able to evolve up to even-5-parity problem using a population of
4000 individuals with 600 genes each evolved for 50 generations. The shortest
evolved standard digital circuit has 6 gates for the even-3-parity problem, and
9 gates for the even-4-parity problem, whereas the reversible ones requires 4
(even-3-parity) and 5 (even-4-parity) gates. The first remark is that reversible
circuits might require less gates than the standard circuits.

However, when the entire set of 16 binary gates (including EQ, NOT, etc) was
employed [12] the length of the evolved standard circuit is considerable shorter.
Only 4 gates are required for a circuit implementing the even-5-parity problem
and 5 standard gates are required for the even-6-parity problem [12]. The results
obtained by using the Fredkin gate are similar (regarding the number of gates)
to those obtained using the entire set of 16 gates with 2 binary inputs.

5 Conclusions and further work

An algorithm based on Multi Expression Programming has been used for de-
signing reversible digital circuits. Numerical experiments have shown the ability

Evolving reversible circuits for the even-parity problem 9

Fig. 3. The shortest evolved evolved reversible digital circuit for the even-4-parity
problem. Output 3 provides the result for the even-parity problem. The other outputs
are used only for achieving the reversibility. FG stands for the Fredkin gate.

of this algorithm to design reversible digital circuits. When compare to the stan-
dard circuits, we can see that the number of outputs of the reversible ones is
larger than the case of the standard circuits. This is in full concordance with
other studies [3] which have shown that reversible computing requires addition
storage space. Further experiments will try to minimize the number of outputs
required by the reversible digital circuit. However, this number cannot be less
than 3 (the number of outputs of the Fredkin gate).

We will also be interested in extracting general principles from the evolved
circuits in order to quickly build larger size reversible circuits. For instance,
Cartesian Genetic Programming was used [13] for discovering of ripple-carry
adder which is widely used for building large scale multipliers and adders. The
evolution of Automatically Defined Functions [6] will also be an interesting as-
pect for reversible digital circuits.

The method will be used for designing other interesting digital circuits such
as reversible adders and multipliers. Other reversible gates, such as CCNOT,
will be considered in further experiments [8].

References

1. Bellman, R.: Dynamic Programming, Princeton University Press, New Jersey,
(1957)

2. Bennett, C. H., and Landauer, R.: Fundamental physical limits of computation.
Scientific American, 253, (1985), 48-56

3. Fredkin, E., Toffoli, T.: Conservative logic, International Journal of Theoretical
Physics, Vol. 21, (1982) 219-253

4. Klein, JP., Leete, TH., Rubin, H.: A Biomolecular Implementation of Logically
Reversible Computation with Minimal Energy Dissipation. BioSystems 52, (1999)
15-23

10 Mihai Oltean

5. Koza, J. R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, (1992)

6. Koza, J. R.: Genetic Programming II: Automatic Discovery of Reusable Subpro-
grams, MIT Press, Cambridge, MA, (1994)

7. Landauer, R.: Irreversibility and heat generation in the computing process, IBM
Journal of Research and Development, Vol 5, (1961), 183-191

8. Langdon, W. B.: THE DISTRIBUTION OF REVERSIBLE FUNCTIONS IS
NORMAL, in Genetic Programming Theory and Practise, Rick L. Riolo and Bill
Worzel (editors), Kluwer Academic Publishers, (2003), 173-188

9. Merkle, R. C.: Reversible Electronic Logic Using Switches, Nanotechnology, Vol 4,
(1993), 21-40

10. Oltean, M.: Solving Even-parity problems with Multi Expression Programming,
the 8th International Conference on Computation Sciences, North Carolina, Chen,
K. et al. (Editors), (2003), 315-318

11. Oltean, M., Grosan, C.: Evolving Digital Circuits using Multi Expression Program-
ming, NASA/DoD Conference on Evolvable Hardware, 24-26 June, Seattle, Edited
by R. Zebulum, D. Gwaltney, G. Horbny, D. Keymeulen, J. Lohn, A. Stoica, IEEE
Press, NJ, (2004), 87-90

12. Oltean, M.: Improving Multi Expression Programming: an Ascending Trail from
Sea-level Even-3-parity Problem to Alpine Even-18-Parity Problem, contributed
chapter 15, Evolutionary Machine Design, edited by Nadia Nedjah (et. al), Studies
in Soft Computing and Fuzziness, Vol 161, Springer-Verlag, (2004), 229-255.

13. Miller, J. F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of
Digital Circuits - Part I, Genetic Programming and Evolvable Machines, Vol. 1(1),
Kluwer Academic Publishers, (2000), 7-35.

14. Poli, R., Page, J.: Solving High-Order Boolean Parity Problems with Smooth Uni-
form Crossover, Sub-Machine Code GP and Demes, Journal of Genetic Program-
ming and Evolvable Machines, Kluwer, (2000), 1-21

15. Syswerda, G.: Uniform Crossover in Genetic Algorithms, Proceedings of the 3rd

International Conference on Genetic Algorithms, Schaffer, J.D. (editor), Morgan
Kaufmann Publishers, San Mateo, CA, (1989), 2-9

16. Toffoli, T.: Reversible computing, In de Bakker, J. W. and van Leeuwen, Jan, edi-
tors, Automata, Languages and Programming, 7th Colloquium, LNCS 75, Springer-
Verlag, (1980), 632-644

17. Wolpert D.H. and McReady W.G.: No Free Lunch Theorems for Search, Technical
Report, SFI-TR-05-010, Santa Fe Institute, (1995)

